55 research outputs found

    On the number of 4-cycles in a tournament

    Full text link
    If TT is an nn-vertex tournament with a given number of 33-cycles, what can be said about the number of its 44-cycles? The most interesting range of this problem is where TT is assumed to have câ‹…n3c\cdot n^3 cyclic triples for some c>0c>0 and we seek to minimize the number of 44-cycles. We conjecture that the (asymptotic) minimizing TT is a random blow-up of a constant-sized transitive tournament. Using the method of flag algebras, we derive a lower bound that almost matches the conjectured value. We are able to answer the easier problem of maximizing the number of 44-cycles. These questions can be equivalently stated in terms of transitive subtournaments. Namely, given the number of transitive triples in TT, how many transitive quadruples can it have? As far as we know, this is the first study of inducibility in tournaments.Comment: 11 pages, 5 figure

    Internal Partitions of Regular Graphs

    Full text link
    An internal partition of an nn-vertex graph G=(V,E)G=(V,E) is a partition of VV such that every vertex has at least as many neighbors in its own part as in the other part. It has been conjectured that every dd-regular graph with n>N(d)n>N(d) vertices has an internal partition. Here we prove this for d=6d=6. The case d=n−4d=n-4 is of particular interest and leads to interesting new open problems on cubic graphs. We also provide new lower bounds on N(d)N(d) and find new families of graphs with no internal partitions. Weighted versions of these problems are considered as well

    Monotone Maps, Sphericity and Bounded Second Eigenvalue

    Get PDF
    We consider {\em monotone} embeddings of a finite metric space into low dimensional normed space. That is, embeddings that respect the order among the distances in the original space. Our main interest is in embeddings into Euclidean spaces. We observe that any metric on nn points can be embedded into l2nl_2^n, while, (in a sense to be made precise later), for almost every nn-point metric space, every monotone map must be into a space of dimension Ω(n)\Omega(n). It becomes natural, then, to seek explicit constructions of metric spaces that cannot be monotonically embedded into spaces of sublinear dimension. To this end, we employ known results on {\em sphericity} of graphs, which suggest one example of such a metric space - that defined by a complete bipartitegraph. We prove that an δn\delta n-regular graph of order nn, with bounded diameter has sphericity Ω(n/(λ2+1))\Omega(n/(\lambda_2+1)), where λ2\lambda_2 is the second largest eigenvalue of the adjacency matrix of the graph, and 0 < \delta \leq \half is constant. We also show that while random graphs have linear sphericity, there are {\em quasi-random} graphs of logarithmic sphericity. For the above bound to be linear, λ2\lambda_2 must be constant. We show that if the second eigenvalue of an n/2n/2-regular graph is bounded by a constant, then the graph is close to being complete bipartite. Namely, its adjacency matrix differs from that of a complete bipartite graph in only o(n2)o(n^2) entries. Furthermore, for any 0 < \delta < \half, and λ2\lambda_2, there are only finitely many δn\delta n-regular graphs with second eigenvalue at most λ2\lambda_2

    Graphs with few 3-cliques and 3-anticliques are 3-universal

    Full text link
    For given integers k, l we ask whether every large graph with a sufficiently small number of k-cliques and k-anticliques must contain an induced copy of every l-vertex graph. Here we prove this claim for k=l=3 with a sharp bound. A similar phenomenon is established as well for tournaments with k=l=4.Comment: 12 pages, 1 figur
    • …
    corecore